Electronic color code
The electronic color code is used to indicate the values or ratings of electronic components, very commonly for resistors, but also for capacitors, inductors, and others. A separate code, the 25-pair color code, is used to identify wires in some telecommunications cables.The electronic color code was developed in the early 1920s by the Radio Manufacturers Association (now part of Electronic Industries Alliance (EIA)), and was published as EIA-RS-279. The current international standard is IEC 60062
Colorbands were commonly used (especially on resistors) because they were easily printed on tiny components, decreasing construction costs. However, there were drawbacks, especially for color blind people. Overheating of a component, or dirt accumulation, may make it impossible to distinguish brown from red from orange. Advances in printing technology have made printed numbers practical for small components, which are often found in modern electronics.
Resistor color-coding
- band A is first significant figure of component value (left side)
- band B is the second significant figure (Some precision resistors have a third significant figure, and thus five bands.)
- band C is the decimal multiplier
- band D if present, indicates tolerance of value in percent (no band means 20%)
Resistors manufactured for military use may also include a fifth band which indicates component failure rate (reliability); refer to MIL-HDBK-199 for further details.
Tight tolerance resistors may have three bands for significant figures rather than two, or an additional band indicating temperature coefficient, in units of ppm/K.
All coded components will have at least two value bands and a multiplier; other bands are optional.
The standard color code per EN 60062:2005 is as follows:
Color | Significant figures |
Multiplier | Tolerance | Temp. Coefficient (ppm/K) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Black | 0 | ×100 | – | 250 | U | |||||
Brown | 1 | ×101 | ±1% | F | 100 | S | ||||
Red | 2 | ×102 | ±2% | G | 50 | R | ||||
Orange | 3 | ×103 | – | 15 | P | |||||
Yellow | 4 | ×104 | (±5%) | – | 25 | Q | ||||
Green | 5 | ×105 | ±0.5% | D | 20 | Z | ||||
Blue | 6 | ×106 | ±0.25% | C | 10 | Z | ||||
Violet | 7 | ×107 | ±0.1% | B | 5 | M | ||||
Gray | 8 | ×108 | ±0.05% (±10%) | A | 1 | K | ||||
White | 9 | ×109 | – | – | ||||||
Gold | – | ×10-1 | ±5% | J | – | |||||
Silver | – | ×10-2 | ±10% | K | – | |||||
None | – | – | ±20% | M | – | |||||
|
Zero ohm resistors are made as lengths of wire wrapped in a resistor-shaped body which can be substituted for another resistor value in automatic insertion equipment. They are marked with a single black band.
The 'body-end-dot' or 'body-tip-spot' system was used for radial-lead (and other cylindrical) composition resistors sometimes still found in very old equipment; the first band was given by the body color, the second band by the color of the end of the resistor, and the multiplier by a dot or band around the middle of the resistor. The other end of the resistor was colored gold or silver to give the tolerance, otherwise it was 20%.
Capacitor color-coding
Capacitors may be marked with 4 or more colored bands or dots. The colors encode the first and second most significant digits of the value, and the third color the decimal multiplier in picofarads. Additional bands have meanings which may vary from one type to another. Low-tolerance capacitors may begin with the first 3 (rather than 2) digits of the value. It is usually, but not always, possible to work out what scheme is used by the particular colors used. Cylindrical capacitors marked with bands may look like resistors.Color | Significant digits | Multiplier | Capacitance tolerance | Characteristic | DC working voltage | Operating temperature | EIA/vibration | |
---|---|---|---|---|---|---|---|---|
Black | 0 | 1 | ±20% | — | — | −55 °C to +70 °C | 10 to 55 Hz | |
Brown | 1 | 10 | ±1% | B | 100 | — | — | |
Red | 2 | 100 | ±2% | C | — | −55 °C to +85 °C | — | |
Orange | 3 | 1000 | — | D | 300 | — | — | |
Yellow | 4 | 10000 | — | E | — | −55 °C to +125 °C | 10 to 2000 Hz | |
Green | 5 | — | ±0.5% | F | 500 | — | — | |
Blue | 6 | — | — | — | — | −55 °C to +150 °C | — | |
Violet | 7 | — | — | — | — | — | — | |
Grey | 8 | — | — | — | — | — | — | |
White | 9 | — | — | — | — | — | EIA | |
Gold | — | — | ±5%* | — | 1000 | — | — | |
Silver | — | — | ±10% | — | — | — | — |
*or ±0.5 pF, whichever is greater.
Extra bands on ceramic capacitors will identify the voltage rating class and temperature coefficient characteristics. A broad black band was applied to some tubular paper capacitors to indicate the end that had the outer electrode; this allowed this end to be connected to chassis ground to provide some shielding against hum and noise pickup.
Polyester film and "gum drop" tantalum electrolytic capacitors are also color-coded to give the value, working voltage and tolerance.
Diode part number
The part number for diodes was sometimes also encoded as colored rings around the diode, using the same numerals as for other parts. The JEDEC "1N" prefix was assumed, and the balance of the part number was given by three or four rings.Postage stamp capacitors and war standard coding
Capacitors of the rectangular 'postage stamp" form made for military use during World War II used American War Standard (AWS) or Joint Army Navy (JAN) coding in six dots stamped on the capacitor. An arrow on the top row of dots pointed to the right, indicating the reading order. From left to right the top dots were: either black, indicating JAN mica, or silver, indicating AWS paper; first significant digit; and second significant digit. The bottom three dots indicated temperature characteristic, tolerance, and decimal multiplier. The characteristic was black for ±1000 ppm/°C, brown for ±500, red for ±200, orange for ±100, yellow for −20 to +100 ppm/°C, and green for 0 to +70 ppm/°C. A similar six-dot code by EIA had the top row as first, second and third significant digits and the bottom row as voltage rating (in hundreds of volts; no color indicated 500 volts), tolerance, and multiplier. A three-dot EIA code was used for 500 volt 20% tolerance capacitors, and the dots signified first and second significant digits and the multiplier. Such capacitors were common in vacuum tube equipment and in surplus for a generation after the war but are unavailable now.Mnemonics
Further information: List of electronic color code mnemonics
A useful mnemonic matches the first letter of the color code, by order of increasing magnitude. Here is one that includes tolerance codes gold, silver, and none:- Bad beer rots our young guts but vodka goes well – get some now.
Examples
- Green-Blue-Black-Brown
- 56 ohms ± 1%
- Red-Red-Orange-Gold
- 22,000 ohms ± 5%
- Yellow-Violet-Brown-Gold
- 470 ohms ± 5%
- Blue-Gray-Black-Gold
- 68 ohms ± 5%
- violet-red-orange-no band
- 72,000 ohms ± 20%
Printed numbers
In one popular marking method, the manufacturer prints 3 digits on components: 2 value digits followed by the power of ten multiplier. Thus the value of a resistor marked 472 is 4,700 Ω, a capacitor marked 104 is 100 nF (10x104 pF), and an inductor marked 475 is 4.7 H (4,700,000 µH). This can be confusing; a resistor marked 270 might seem to be a 270 Ω unit, when the value is actually 27 Ω (27×100). A similar method is used to code precision surface mount resistors by using a 4-digit code which has 3 significant figures and a power of ten multiplier. Using the same example as above, 4701 would represent a 470x101=4700 Ω, 1% resistor. Another way is to use the "kilo-" or "mega-" prefixes in place of the decimal point:
- 1K2 = 1.2 kΩ = 1,200 Ω
- M47 = 0.47 MΩ = 470,000 Ω
- 68R = 68 Ω
Letter | Multiplier | Decimal |
---|---|---|
Z | 10−3 | 0.001 |
Y or R | 10−2 | 0.01 |
X or S | 10−1 | 0.1 |
A | 100 | 1 |
B or H | 101 | 10 |
C | 102 | 100 |
D | 103 | 1000 |
E | 104 | 10000 |
F | 105 | 100000 |
SMT jumpers, marked "0" or "000", are sometimes called "Zero-ohm links" or "0-ohm resistors" although technically they are not resistors.
Transformer wiring color codes
Power transformers used in North American vacuum-tube equipment often were color-coded to identify the leads. Black was the primary connection, red secondary for the B+ (plate voltage), red with a yellow tracer was the center tap for the B+ full-wave rectifier winding, green or brown was the heater voltage for all tubes, yellow was the filament voltage for the rectifier tube (often a different voltage than other tube heaters). Two wires of each color were provided for each circuit, and phasing was not identified by the color code.Audio transformers for vacuum tube equipment were coded blue for the finishing lead of the primary, red for the B+ lead of the primary, brown for a primary center tap, green for the finishing lead of the secondary, black for grid lead of the secondary, and yellow for a tapped secondary. Each lead had a different color since relative polarity or phase was more important for these transformers. Intermediate-frequency tuned transformers were coded blue and red for the primary and green and black for the secondary.
0 comments:
Post a Comment